首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1002篇
  免费   61篇
  国内免费   43篇
化学   118篇
晶体学   3篇
力学   529篇
综合类   1篇
数学   118篇
物理学   337篇
  2023年   7篇
  2022年   8篇
  2021年   17篇
  2020年   14篇
  2019年   15篇
  2018年   14篇
  2017年   21篇
  2016年   21篇
  2015年   24篇
  2014年   38篇
  2013年   57篇
  2012年   28篇
  2011年   55篇
  2010年   22篇
  2009年   83篇
  2008年   57篇
  2007年   73篇
  2006年   58篇
  2005年   42篇
  2004年   27篇
  2003年   60篇
  2002年   34篇
  2001年   31篇
  2000年   23篇
  1999年   35篇
  1998年   34篇
  1997年   29篇
  1996年   32篇
  1995年   20篇
  1994年   23篇
  1993年   10篇
  1992年   23篇
  1991年   26篇
  1990年   4篇
  1989年   15篇
  1988年   2篇
  1987年   6篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   4篇
  1980年   1篇
  1977年   1篇
排序方式: 共有1106条查询结果,搜索用时 250 毫秒
1.
The interaction of weak noise and regular signals with a shock wave having a finite width is studied in the framework of the Burgers equation model. The temporal realization of the random process located behind the front approaches it at supersonic speed. In the process of moving to the front, the intensity of noise decreases and the correlation time increases. In the central region of the shock front, noise reveals non-trivial behaviour. For large acoustic Reynolds numbers the average intensity can increase and reach a maximum value at a definite distance. The behaviour of statistical characteristics is studied using linearized Burgers equation with variable coefficients reducible to an autonomous equation. This model allows one to take into account not only the finite width of the front, but the attenuation and diverse character of initial profiles and spectra as well. Analytical solutions of this equation are derived. Interaction of regular signals of complex shape with the front is studied by numerical methods. Some illustrative examples of ongoing processes are given. Among possible applications, the controlling the spectra of signals, in particular, noise suppression by irradiating it with shocks or sawtooth waves can be mentioned.  相似文献   
2.
We consider the plane-strain buckling of a cylindrical shellof arbitrary thickness which is made of a Varga material andis subjected to an external hydrostatic pressure on its outersurface. The WKB method is used to solve the eigenvalue problemthat results from the linear bifurcation analysis. We show thatthe circular cross-section buckles into a non-circular shapeat a value of µ1 which depends on A1/A2 and a mode number,where A1 and A2 are the undeformed inner and outer radii, andµ1 is the ratio of the deformed inner radius to A1. Inthe large mode number limit, we find that the dependence ofµ1 on A1/A2 has a boundary layer structure: it is constantover almost the entire region of 0 < A1/A2 < 1 and decreasessharply from this constant value to unity as A1/A2 tends tounity. Our asymptotic results for A1 – 1 = O(1) and A1– 1 = O(1/n) are shown to agree with the numerical resultsobtained by using the compound matrix method.  相似文献   
3.
Fully developed laminar mixed convection of a nanofluid consists of water and Al2O3 in horizontal and inclined tubes has been studied numerically. Three-dimensional elliptic governing equations have been solved to investigate the flow behaviors over a wide range of the Grashof and Reynolds numbers. Comparisons with previously published experimental and numerical works on mixed convection in a horizontal and inclined tube are performed and good agreements between the results are observed. Effects of nanoparticles concentration and tube inclinations on the hydrodynamics and thermal parameters are presented and discussed. It is shown that the nanoparticles concentration does not have significant effects on the hydrodynamics parameters. Heat transfer coefficient increases by 15% at 4 Vol.% Al2O3. Skin friction coefficient continually increases with the tube inclination, but the heat transfer coefficient reaches a maximum at the inclination angle of 45°.  相似文献   
4.
A free-piston driver that employs entropy-raising shock processes with diaphragm rupture has been constructed, which promises significant theoretical advantages over isentropic compression. Results from a range of conditions with helium and argon driver gases are reported. Significant performance gains were achieved in some test cases. Heat losses are shown to have a strong effect on driver processes. Measurements compare well with predictions from a quasi-one-dimensional numerical code. Received 7 September 1996 / Accepted 5 October 1996  相似文献   
5.
The piecewise linear method (PLM) based on time operator splitting is used to solve the unsteady compressible Euler equations describing the two-dimensional flow around and through a straight wall inlet placed stationary in a rapidly rotating supersonic flow. The PLM scheme is formulated as a Lagrangian step followed by an Eulerian remap. The inhomogeneous terms in the Euler equations written in cylindrical coordinates are first removed by Sod's method and the resulting set of equations is further reduced to two sets of one-dimensional Lagrangian equations, using time operator splitting. The numerically generated flow fields are presented for different values of the back pressure imposed at the downstream exit of the inlet nozzle. An oblique shock wave is formed in front of the almost whole portion of the inlet entrance, the incoming streamlines being deflected towards the higher pressure side after passing through the oblique shock wave and then bending down to the lower pressure side. A reverse flow appears inside the inlet nozzle owing to the recovery pressure of the incoming streams being lower than the back pressure of the inlet nozzle.  相似文献   
6.
Models, describing relativistic particles, where Lagrangian densities depend linearly on both the curvature and the torsion of the trajectories, are revisited in D=3 space forms. The moduli spaces of trajectories are completely and explicitly determined using the Lancret program. The moduli subspaces of closed solitons in the three sphere are also determined.  相似文献   
7.
Mitigating the effects of explosive blasts has been an important concern for a long time. Water-mist presents an attractive option due to its easy availability, extensive use in the fire suppression area, and non-toxicity. However, its ability to mitigate the effects of blasts is unclear. This research uses multiphase numerical simulations to elucidate some of the issues associated with using water-mist to mitigate explosive blasts in unconfined spaces. Initial multidimensional simulations examine the effect of water-mist on the blast wave generated by a TNT explosive. Results show that the droplets are generally swept outward with the shock wave and in general do not penetrate into the secondary fireball. The water-mist does, however, mitigate the shock-front through vaporization and momentum extraction. Further simulations show that momentum extraction has the dominant role in mitigating the leading shock wave. Parametric studies indicate that droplet size and mass loading play a secondary role to the total amount of water between the observer and the explosive blast. This is a promising result for using water-mist for blast-mitigation, because it suggests that water-mist can be as effective as having a more dense “water wall” surrounding the explosive.  相似文献   
8.
In this paper, the authors consider the inverse piston problem for the system of one-dimensional isentropic flow and obtain that, under suitable conditions, the piston velocity can be uniquely determined by the initial state of the gas on the right side of the piston and the position of the forward shock.  相似文献   
9.
三维内肋管内插入螺旋扭带的强化传热实验   总被引:4,自引:0,他引:4  
本文分别以水和乙二醇为工质,在Re数范围为:600~40000,Pr数范围为:5.5~110之间,对四根分别插入三种不同扭率螺旋扭带的三维内助管内的换热和流阻特性进行了实验研究。结果表明:三维内肋管内加装扭带的强化传热技术适用于低Re数下高Pr数工质的管内对流换热强化。根据实验值得到了流阻和换热关联式。  相似文献   
10.
The shock structure problem is one of the classical problems of fluid mechanics and at least for non-reacting dilute gases it has been considered essentially solved. Here we present a few recent findings, to show that this is not the case. There are still new physical effects to be discovered provided that the numerical technique is general enough to not rule them out a priori. While the results have been obtained for dense fluids, some of the effects might also be observable for shocks in dilute gases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号